Similarity Coefficients of Normal Distributions in Selecting the Optimal Treatments

نویسندگان

  • Elisabeth Rakus-Andersson
  • Janusz Frey
چکیده

In the current research, we aim to define a new form of the similarity coefficient to compare the resemblance grade of two Gaussian density functions. We aim to assess the method utility on a theoretical model. The density functions are stated for a biological marker “survival length”, observed in three groups of patients, suffering from a hypothetical disease. The first group consists of patients who are not treated, whereas we recommend 2 possible treatment methods for the second and the third group, respectively. All the “survival length” assumptions of the model (mean values and standard deviations) are made to exclude the equivocal conclusion, regarding a selection of the better treatment. At the first stage, we apply the measure of similarity to populations: survival among untreated patients contra survival among patients after Treatment 1. Another similarity coefficient estimates a relation between populations: survival among untreated patients versus survival among patients after Treatment 2. The lower value of the coefficient points out the more effective treatment. In order to simplify calculations, proposed in the definition of a similarity coefficient, we approximate the Gaussian curve by a specially designed polynomial, known as the π-function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Flux Distribution in Bacillus subtilis: Inspection on Plurality of Optimal Solutions

Linear programming problems with alternate solutions are challenging due to the choice of multiple strategiesresulting in the same optimal value of the objective function. However, searching for these solutions is atedious task, especially when using mixed integer linear programming (MILP), as previously applied tometabolic models. Therefore, judgment on plurality of optimal m...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Minimizing the supplying cost of leverage items: a mathematical approach

In the new competitive environment, selecting and planning of the supply chain is very crucial and involves evaluation of many factors. Different approaches have been applied to assess the supplier/s. Most of these studies are based upon the supplier/s' capabilities. It may be neither rational nor economical to deal with each item via a generic material control system. Furthermore, supplier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016